96 research outputs found

    A Forward Branching Phase Space Generator for Hadron colliders

    Full text link
    In this paper we develop a projective phase space generator appropriate for hadron collider geometry. The generator integrates over bremsstrahlung events which project back to a single, fixed Born event. The projection is dictated by the experimental jet algorithm allowing for the forward branching phase space generator to integrate out the jet masses and initial state radiation. When integrating over the virtual and bremsstrahlung amplitudes this results in a single K-factor, assigning an event probability to each Born event. This K-factor is calculable as a perturbative expansion in the strong coupling constant. One can build observables from the Born kinematics, giving identical results to tradi- tional observables as long as the observable does not depend on the infrared sensitive jet mass or initial state radiation.Comment: 16 pages, 10 figure

    Anomalous Higgs boson couplings in vector boson fusion at the CERN LHC

    Get PDF
    Deviations from SM expectations in the Higgs sector can be parameterized by an effective Lagrangian. The corresponding anomalous couplings have been implemented in a Monte Carlo program for Higgs production in vector boson fusion, at NLO QCD accuracy. It allows to study anomalous coupling effects for production and decay of the Higgs boson. We analyze deviations allowed by LEP data and study a new azimuthal angle variable which directly measures the interference between CP-even, CP-odd and SM couplings.Comment: 15 pages, 8 figure

    QCD corrections to vector boson fusion processes

    Full text link
    NLO QCD corrections to H, W and Z production via vector boson fusion have recently been calculated in the form of flexible parton level Monte Carlo programs. This allows for the calculation of distributions and cross sections with cuts at NLO accuracy. Some features of the calculation, as well as results for the LHC, are reviewed.Comment: 1 style file, 1 latex file, 5 figures, Contribution to the Proceedings of "Loops and Legs in Quantum Field Theory, 2004", Zinnowitz, Usedom Island, Germany, April, 200

    Next-to-leading order QCD corrections to Higgs boson production in association with a photon via weak-boson fusion at the LHC

    Get PDF
    Higgs boson production in association with a hard central photon and two forward tagging jets is expected to provide valuable information on Higgs boson couplings in a range where it is difficult to disentangle weak-boson fusion processes from large QCD backgrounds. We present next-to-leading order QCD corrections to Higgs production in association with a photon via weak-boson fusion at a hadron collider in the form of a flexible parton-level Monte Carlo program. The QCD corrections to integrated cross sections are found to be small for experimentally relevant selection cuts, while the shape of kinematic distributions can be distorted by up to 20% in some regions of phase space. Residual scale uncertainties at next-to-leading order are at the few-percent level.Comment: 17 pages, 7 figures, 1 tabl

    Maximum Significance at the LHC and Higgs Decays to Muons

    Get PDF
    We present a new way to define and compute the maximum significance achievable for signal and background processes at the LHC, using all available phase space information. As an example, we show that a light Higgs boson produced in weak--boson fusion with a subsequent decay into muons can be extracted from the backgrounds. The method, aimed at phenomenological studies, can be incorporated in parton--level event generators and accommodate parametric descriptions of detector effects for selected observables.Comment: 7 pages, 2 figures, changes to wording and new references, published versio

    Collider Signatures of the N=3 Lee-Wick Standard Model

    Full text link
    Inspired by the Lee-Wick higher-derivative approach to quantum field theory, Grinstein, O'Connell, and Wise have illustrated the utility of introducing into the Standard Model negative-norm states that cancel quadratic divergences in loop diagrams, thus posing a potential resolution of the hierarchy problem. Subsequent work has shown that consistency with electroweak precision parameters requires many of the partner states to be too massive to be detected at the LHC. We consider the phenomenology of a yet-higher derivative theory that exhibits three poles in its bare propagators (hence N=3), whose states alternate in norm. We examine the interference effects of W boson partners on LHC scattering cross sections, and find that the N=3 LWSM already makes verifiable predictions at 10 fb^(-1) of integrated luminosity.Comment: 15 pages, 4 PDF figures. Version accepted for publication by JHE

    Release Note -- Vbfnlo-2.6.0

    Full text link
    Vbfnlo is a flexible parton level Monte Carlo program for the simulation of vector boson fusion (VBF), double and triple vector boson (plus jet) production in hadronic collisions at next-to-leading order (NLO) in the strong coupling constant, as well as Higgs boson plus two jet production via gluon fusion at the one-loop level. This note briefly describes the main additional features and processes that have been added in the new release -- Vbfnlo Version 2.6.0. At NLO QCD diboson production (W\gamma, WZ, ZZ, Z\gamma and \gamma\gamma), same-sign W pair production via vector boson fusion and the process W\gamma\gamma j have been implemented (for which one-loop tensor integrals up to six-point functions are included). In addition, gluon induced diboson production can be studied separately at the leading order (one-loop) level. The diboson processes WW, WZ and W\gamma can be run with anomalous gauge boson couplings, and anomalous couplings between a Higgs and a pair of gauge bosons is included in WW, ZZ, Z\gamma and \gamma\gamma diboson production. The code has also been extended to include anomalous gauge boson couplings for single vector boson production via VBF, and a spin-2 model has been implemented for diboson pair production via vector boson fusion.Comment: 14 pages, 6 tables; new code available at http://www-itp.particle.uni-karlsruhe.de/vbfnlo
    corecore